Application of Win32 executable file infectors on Intel Itanium and AMD Opteron based Win64 systems

Oleg Petrovsky and Sha-Li Hsieh

Computer Associates International Inc.

1 Computer Associates Plaza, Islandia, NY 11749, USA

Abstract

A case study includes a selection of Win32 file infectors applied to Win64 executables. The Win64 executables are presented in the extended portable executable file format (also known as PE+). The file infectors applied in the case study are categorized according to the methods the viruses use to infect host files.

That includes the following types of viruses:

Companion
A virus poses as a host file renaming the host file to a different name. When executed the virus launches the renamed host file.

Pre-pending
The virus code is attached at the front of a host executable.

Inserting in an empty space inside executable sections
The virus code is injected in a free space found inside executable sections, sometimes the space is freed by compressing the original code.

Appending a new executable section
A new section is created to hold a virus code; the new section is appended to a host file.

Different schemas of gaining a program’s control and its implication on PE+ format are analyzed. These include patching an original PE header, original entry point obfuscation mechanism and pre-pending the entire virus body with it’s own PE header.

The test bed consists of a Windows XP 64 bit edition running on Itanium and Opteron based systems.

Two scenarios are analyzed:

1. Attempts when a virus is executed directly on the 64-bit system.
2. Virus is executed on the 32-bit system mapping 64 bit system drives.

Possibilities of virus propagations and security threats imposed by Win32 viruses towards the integrity of Win64 based systems are assessed.

Introduction

The research started as an attempt to understand and assess the implications of 32 bit file infectors on the 64-bit file format but during its course the research grew to cover a bit broader topic, namely what malware can do to a 64-bit system as a whole.

It might appear as a surprise but the 64-bit platforms have been around for quite some time. Just to name a few AS\400 by IBM, Sparc by SUN, Alpha by Digital Equipment Corporation (than a Compaq company and now HP) and even Nintendo Game Cube all have one thing in common, they are based around a 64-bit core. Ever since, large enterprises have been using 64 bit platforms through the deployment of servers, operating systems, middleware and applications at the backend.

Also only just a few years ago due to the recent computer chip manufacturing technological advances, 64-bit platforms started to become more affordable and readily available to small businesses and even home users.

One might ask why do we need 64-bit computing? The question is often asked but rarely answered in a satisfying matter because it is not one question to be asked but two: How do large enterprises currently utilize 64-bit platforms? And the second question: How can the consumer market benefit from using 64-bit computers?

First, by popular definition, a 64-bit microprocessor is a single chip computational unit containing 64-bit general-purpose registers. The 64-bit processor is operated by the 64-bit code, which in turn is the set of instructions, which are capable of operating on 64-bit digits. In following, it all comes down to 64-bit integer arithmetic.

Note: Floating-point calculations in 32-bit processors require 80-bit math coprocessor registers or with the introduction of SIMD (Single Instruction Multiple Data) the use of 128-bit XMM registers.

An integer that fits into a 64-bit register has a dynamic range of 264 or 1.8e19 (18 exa, 18 million tera). This means that in comparison to a 32-bit integer, a 64-bit integer can represent a much larger number. Since the address pointer is in fact another 64-bit integer, a 64-bit microprocessor theoretically is capable off addressing 18 million terabytes of flat memory.

How often do we need to operate on 64 bit integers? I would speculate that as consumers or small business enterprises not very often. But that situation is rapidly changing. Large terabyte size databases do benefit from operating in the range of more than a 4GB memory space, the range which would normally be allowed by a 32-bit microprocessor. In the same memory hungry bandwagon are media-rich applications, including various rendering programs, professional movie editing software and CAD tools. On the side of utilizing 64-bit integer computational power, there are various scientific applications, including applications that model various objects or effects (nuclear fusion on your desk, anyone?) and of course cryptography -the mathematical theory which relies on factoring and multiplications of very large integers.

The evolution from 32 to 64-bit in consumer computing seems to be inevitable. At this moment a number of chip and computer hardware making giants such as Intel, Advanced Micro Devices and IBM (with its new, 64-bit, PowerPC processor), are trying to push the consumer level computer industry to 64-bit computing with the introduction of affordable 64-bit microprocessors and their supporting chip set solutions.

It becomes even more appealing with the availability of the 64-bit Microsoft Windows operating system for Intel and AMD 64-bit processor platforms.

64-bit processor platforms based on Opteron from AMD and Itanium from Intel.

One of the consumer level 64-bit microprocessors, which recently started to appear on the market is Opteron, which was developed and manufactured by AMD.

Opteron supports a 144 bit double density memory bus and has an inbuilt memory controller (thereby reducing the amount of the supporting chipsets). The on chip memory controller design provides for lower memory access latency than the conventional approach. This is because the memory control components’ integration is the same level as the main processor’s logic.

Opteron is utilizing a Hyper Transport protocol that was developed and is supported by AMD. The protocol allows the “glueless” intercommunications between multiple processor chips (microprocessors connect to each other’s pins without additional bridging chip sets). The Hyper Transport protocol also provides connectivity to systems I/O devices, PCI and AGP buses. That solution minimizes the use of the “North Bridge” chipset logic and eliminates racing conditions between microprocessors in multiprocessor systems configurations trying to utilize the bandwidth of the front side bus. (FSB)

Currently Opteron is available in the following clock and multiple processor configurations range: 1.4 GHz, 1.6 GHz, 1.8 GHz, and the 100 (one processor system), 200 (up to two processors) and 800 (supports up to 8 processors) series.

AMD decided to transition the 32-bit x86 instruction set architecture to 64 by doubling the size of the available eight general purpose registers and introducing new mnemonics to abbreviate the new register set. Apart from extending the register set, AMD introduced additional 8 new 64-bit general-purpose registers and 8 more 128-bit SIMD registers.

Reusing x86 ISA, AMD expands it to support 64-bit operands, registers and memory pointers and makes it easier to adapt 32-bit applications without the speed barriers of 32-bit emulation on the 64-bit chip. Because of the native support for 32-bit x86 ISA, Opteron based systems are capable of running 32-bit operating systems already available for x86.

Itanium range processors are being developed and produced by Intel.

Currently there is Itanium and the next generation, Itanium2, processors available; the latter runs at 1GHz and has 3MB L3 on die cache. Work is in progress on the third generation Itanium processor, which runs at 1.5GHz and boasts 6MB on die cache.

The Itanium line of processors’ instruction set architecture is more efficient and robust than legacy x86 architectures. Also, in order to continue support for 32-bit x86 applications, Itanium has to use a x86-to-IA-64 decoder which is dedicated to the x86 instruction set on chip emulator. Since 32 bit instructions are emulated it impacts efficiency of 32-bit applications executing on the IA 64 platform.

The instruction set architecture for the Itanium processor family follows the EPIC Explicitly Parallel Instruction Computing) paradigm. Along with a few disadvantages such as the increased amount of code necessary for completing complex operations and the necessary increase of the instruction fetch cache, the EPIC architecture is considered to be more efficient speed wise compared to the x86 CISC (Complex Instruction Set Computing) design previously employed by Intel. Intel developed a set of tools and compilers to produce tailored, highly optimized Itanium EPIC architecture code.

The programming model of the processor consists of 127 64 bit general use registers, 127 81 bit floating point registers, eight 64 bit branch registers, an instruction pointer register, a set of 127 64 bit application registers, processor identifiers registers and performance monitor data registers.

Supporting chip sets were developed by Intel as well as by the third party companies providing the “glue” logic for the Itanium processors family.

The porting of Microsoft Windows exists for both Opteron and Itanium based systems.

The Opteron and the Itanium implementations of Windows are functionally identical and will be referred to as 64-bit Windows in this paper.

32 bit applications support in Windows 64

To support execution of 32-bit applications, 64-bit windows employs a Windows on Windows 64 subsystem. The WoW64 provides an abstraction layer to 32 bit windows applications emulating a 32-bit Windows environment. Wow64 consists of 3 dlls, located in %windows%\System32, which are Wow64.dll, Wow64win.dll and Wow64cpu.dll.

Wow64.dll is responsible for intercepting Win32 system calls and passing them to the 64-bit kernel. Wow64.dll is also responsible for fetching arguments from the 32-bit stack frame, extending the arguments to the 64-bit size, allocating the 64-bit frame stack and finally providing the 64 bit arguments on the 64-bit frame stack for the NT64 kernel. Once the API is executed results are converted to the proper 32-bit representation and returned to the 32-bit caller. Most of the Windows 32 system dlls are directly reused by the Wow64 subsystem. Win32 dlls use a custom calling sequence to make it possible for Wow64 to intercept Win32 system calls with very little overhead in user mode.

Virus Threats on 64-bit Windows

Both hardware platforms support MBR and the GUID Partition Table (GPT) hard disk configurations. 64-bit Windows can read and write to MBR disks but in order to boot, 64-bit Windows requires a GPT disk.

MBR Infections

All GPT disks have a protective MBR residing in sector 0 preceding the GPT partition. The MBR contains one partition table type 0xEE that partitions the disk and provides support to the legacy MBR based disk tools. Such tools might include a DOS FDISK utility or an NT Disk Administrator (32-bit Windows). The disk tools, which are not aware of the GPT partitions, will not be able to properly access data on the GPT disk. The GPT disk will appear as an MBR disk with a possibly unrecognized partition instead of appearing as unformatted. Since the MBR is not used during the boot process of the Windows system the Dos MBR boot sector viruses (even though they would be able to infect the MBR) will not affect the GPT based file systems integrity and the 64-bit Windows boot sequence. Also, MBR viruses will not be able to propagate since the viral code will not be loaded and run during the GPT boot.

System Infections (Trojans and Worms)

Most of the Trojan and worm type malware registers to run after the system undergoes a “cold” or a “warm” reset.

To achieve that the malicious code needs to do one or more of the following operations;

· Copying itself to a designated location

· Applying changes to the system registry settings

· Inserting references to its code inside win.ini or system.ini files

· Putting itself in to the systems startup folder

· Modifying or substituting a program, that runs on every boot by the OS, to run the malicious code

· Change associations to known file types

· Install as an NT service

Copying itself to the designated location

The file directory structure under 64-bit windows is designed to make transparent to 32 bit applications the fact that they are running under the WOW64 subsystem. At the same time the 32 and 64 bit system DLLs are stored separately. That’s achieved by redirecting file access requests from 32-bit applications to the system32 folder of the dedicated WOW64 subsystem folder, and not to the 64-bit Windows System folder. The following folders are not redirected:

%System Root%\system
%System Root%
Documents And Settings\%Current User%\Start Menu\Programs\Startup
Documents and Settings\All Users\Start Menu\Programs\Startup
Note that the malicious code can be referenced in the registry without a full path to its location, and can be copied to a location that is in the systems path in order for such reference to work.

Applying changes to the registry settings

The 64-bit windows registry supports both 64-bit and 32-bit environment. The 32-bit applications HKEY_LOCAL_MACHINE\Software structure is replicated under HKEY_LOCAL_MACHINE\Software\WOW6432Node.
It’s achieved by redirecting the access requests from 32-bit applications to HKEY_LOCAL_MACHINE\Software registry to HKEY_LOCAL_MACHINE\Software\WOW6432Node.

The 64 and 32 keys can be accessed and modified by the 64-bit registry editor. Meanwhile, using the 32-bit implementation of the registry editor found in %SystemRoot%\SysWOW64\ will only provide access to the 32-bit part of the registry. Every modification done under the HKLM\Software key (except those replicated in order to provide COM interoperability) will be processed only after the WOW64 layer is initialized which means the key sets under HKLM\Software\Microsoft\Windows\CurrentVersion\Run* registered by 32-bit applications will not function as expected.

The rest of the registry structure is not redirected and can be equally accessed and modified by both 32-bit and 64-bit applications. That includes the HKEY_CURRENT_USER (HKCU) hive, which is also heavily utilized by existing malware.

Registry values under these registry keys can be used to run an application during windows startup:

HKLM\Software\Microsoft\Windows\CurrentVersion\RunServices\

HKLM\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce\

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\

HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnce\

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\

HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce\

HKCU\Software\Microsoft\Windows\CurrentVersion\RunServices\

The registry value may contain

\<arbitrary sub key>\<path to the application>\application.exe"

If an application is in the systems’ path, the <path to the application> can be omitted. The application.exe will be executed every time Windows starts.

Another special registry value that can be used to start an application automatically is the “run” value under this key:

HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows\

This key is not redirected and is expected to work the same way as in 32-bit Windows.

Putting itself into the system startup folder

The following registry keys reflect the location of a startup directory.

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Startup

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders\Startup

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Common Startup

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders\Common Startup

On every Windows startup, all applications residing under the Startup directory are automatically executed.

Inserting references to its code inside win.ini, system.ini and winstart.bat files
Win.ini and System.ini files reside in %System Root% and are accessible by both 32 and 64 bit applications. The 32-bit applications can modify the "shell=" line in system.ini and "run=" and "load=" lines in win.ini.

SYSTEM.INI

[boot]

Shell=Explorer.exe malware.exe

WIN.INI

[windows]

run=malware.exe

load=malware.exe

WINSTART.BAT

This batch file is equivalent to AUTOEXEC.BAT in Windows 9x and DOS systems, and is automatically executed on every Windows startup.

Change associations of known file types

The following registry keys are responsible for the extensions shell spawning.

HKCR\batfile\shell\open\command @="\"%1\" %*"

HKCR\comfile\shell\open\command @="\"%1\" %*"

HKCR\exefile\shell\open\command @="\"%1\" %*"

HKCR\htafile\Shell\open\command @="\"%1\" %*"

HKCR\piffile\shell\open\command @="\"%1\" %*"

HKLM\Software\CLASSES\batfile\shell\open\command @="\"%1\" %*"

HKLM\Software\CLASSES\comfile\shell\open\command @="\"%1\" %*"

HKLM\Software\CLASSES\exefile\shell\open\command @="\"%1\" %*"

HKLM\Software\CLASSES\htafile\shell\open\command @="\"%1\" %*"

HKLM\Software\CLASSES\piffile\shell\open\command @="\"%1\" %*"

The commands specified in the registry value are usually modified by the malware to reference a location of a program that the malware intends to start every time a file with a corresponding extension is activated.

Install as NT service

Against security expert’s warning, a large portion of Windows users are still using accounts with Administrator rights to do their daily work. This practice gives malware the ability to perform any action desired on the infected system, which includes installing itself as a service that requires Administrator rights. This is usually achieved by calling a series of Service Control Management Windows System APIs. A NT service has its own startup registry setting under HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services. To forcefully terminate an NT service, special debug privileges need to be enabled which poses problems for cleaning an infected system manually.

File Infections (Modifying legitimate applications to run malicious code)

When modifying a legitimate application to run a malicious code the following scenarios are possible.

Attaching itself to the beginning of the executable image. No header modifications are required. The original program is stored inside an additional section and in order to run it is extracted to its original form and then executed using CreateProcess() and ShellExecute() functions. Both of these functions can launch 32-bit and 64-bit processes from within either a 32-bit or 64-bit process space.

Overwriting an original file, the original code is not preserved.

Overwriting an original file preserving the original code in one of the files streams. That technique is only applicable to NTFS partition.

Modifying the PE+ header of an original file to point to viral code embedded in the file:

The methods with which viral code can be embedded might include adding a new section to a file, inserting viral code into the empty caveats of the original file sections or creating such caveats by compressing the original sections data.

Viruses using an entry point obfuscation method (EPO):

The viral code is embedded into a targeted file with any of the methods described above but instead of changing an original entry point in the PE+ header, it redirects an API call inside the original code to point to a virus entry point instead. As an example of APIs, viruses might use ExitProcess() or GetWindowsVersion() function calls.

Visual Basic Script Support

Visual basic script is passed to the Windows Scripting host engine. The engine is a 64-bit application; it provides access to 64-bit registry hives and programming folders. Therefore, there’s no 32-bit restriction to VBS-based malicious code executing on a 64-bit platform.

Security Vulnerability Exploits

The recent event of Win32.Poza, also known as W32.Blaster and W32/Lovsan, indicates that existing security vulnerabilities will be carried over to the 64-bit Windows system. Fortunately, exploiting security vulnerabilities usually requires locating a specific memory address to insert malicious code to be executed, which is platform specific and does not pose extra threat concerns.

Future Threats

Interprocess communications

Using 64-bit HKLM\Software registry key access from 32-bit applications.

To allow 64/32 bit program connectivity through COM, certain registry keys are synchronized between 64 and 32-bit portions of the registry.

The following keys are affected:

· HKEY_LOCAL_MACHINE\Software\Classes

· HKEY_LOCAL_MACHINE\Software\COM3

· HKEY_LOCAL_MACHINE\Software\Ole

· HKEY_LOCAL_MACHINE\Software\EventSystem

· HKEY_LOCAL_MACHINE\Software\RPC
During the synchronization process the key’s information may be modified to reflect the differences between 64 and 32-bit systems.

Identifying a platform specific folders and bypass Program Files folder redirection.

EFI infections (New bootable threats)

Infecting PE+ EFI drivers and applications residing on the EFI bootable partition.

Case Study

Anticmos.B - Case of MBR Infection

Master boot sector infector, when booted to a legacy DOS mode from the infected floppy infected the protective MBR. The OS and the OS boot process were not affected. The MBR is not used during the OS boot and its operation. When cleaning such an infection AV solutions should take in to an account that the original MBR information is lost and needs to be replace with the standard protective MBR information.

Win32.Swen.A - Case of System Infection

http://www3.ca.com/virusinfo/virus.aspx?ID=36939
This malware goes to great lengths to preserve its presence on an infected system. Once activated, Win32.Swen.A makes a copy of itself in the Windows directory using random letters as its filename. For example:

%Windows%\CXSGRHCL.EXE
This registry value, with random generated name, is added to run the worm on Windows startup:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\ucfzyojza = "cxsgrhcl.exe autorun"
It modifies the default values of the commands associated with the "exefile", "comfile", "piffile", "scrfile" and "batfile" classes, in order to execute each time other executables are called:

HKCR\exefile\shell\open\command\(Default) = "cxsgrhcl.exe "%1" %*"
HKCR\comfile\shell\open\command\(Default) = "cxsgrhcl.exe "%1" %*"
HKCR\piffile\shell\open\command\(Default) = "cxsgrhcl.exe "%1" %*"
HKCR\batfile\shell\open\command\(Default) = "cxsgrhcl.exe "%1" %*"
HKCR\scrfile\shell\open\command\(Default) = "cxsgrhcl.exe "%1" /S"
HKCR\scrfile\shell\config\command\(Default) = "cxsgrhcl.exe "%1""
The worm also stops users from making registry changes, which makes removing the worm manually quite difficult.

To prevent the user from modifying registry keys using existing .REG files, this value is also modified to show a fake memory access violation error message:

HKCR\regfile\shell\open\command\(Default) = "cxsgrhcl.exe showerror"
Does the malware run successfully on 64-bit Windows?

Unfortunately, Win32.Swen.A runs on 64-bit Windows without many obstacles. The worm is not 64-bit Windows aware, so the Run key modification was created under the \WOW6432Node registry subkey, so it will not have the same effect as in 32-bit Windows, which is to execute the worm on Windows startup. However, it changes the application association of .EXE, .COM, .PIF, .BAT, and .SCR files to run the worm, and this change is replicated to the 64-bit registry hive, so 64-bit Windows will happily run the worm when any files with these extensions invoked.

After the worm activated, it uses CreateProcessA() to launch the original executable. Although the original executable is a 64-bit PE+ file, there is no ill effect observed.

Win32.Swen.A exploits a security vulnerability in Internet Explorer 5.01 and 5.5, described in Microsoft Security Bulletin MS01-020, to automatically execute the mail attachment. The first version of 64-bit Windows comes with Internet Explorer 6, so the exploit is no longer a spreading factor here.

Can existing Antivirus products successfully clean this infection?

Fortunately, even if the Antivirus product is not 64-bit aware, the cleaning procedures will work without problems as well, except the registry value created under Run key will be left behind.

Win32.Klez.H – Case of Combined System and File Infection (Companion)

http://www3.ca.com/virusinfo/virus.aspx?ID=11779
The email worm Win32.Klez also acts as a companion virus. It locates a PE file, copies it under a different name (using a random extension) and overwrites the original file with the worm code. For example, it copies MSACCESS.EXE to MSACCESS.UYI and overwrites the original MSACCESS.EXE.

During this action the virus does not increase the size of the infected program and keeps its original resources, including icon, to present users with the same appearance.

The copy of the original file is compressed then marked as system and hidden. As such, the file is no longer a valid executable, 32-bit or 64-bit.
When a user executes a file that has been overwritten with the worm code - for example - MSACCESS.EXE, the worm runs first, and then it locates, decompresses and executes the original program.

When the attachment is executed, the worm drops a copy of itself into the System directory. It then sets up a registry key to run itself on Windows startup:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\="C:\WINDOWS\SYSTEM\"

The worm creates further copies of itself by inserting its code into .rar archives.

Does the malware run successfully on 64-bit Windows?

Besides spreading via e-mail, the companion virus side of Win32.Klez.H also functions without a problem on 64-bit Windows. Fortunately, the worm’s attempt to be started Windows startup is unsuccessful due to the separation of HKLM\Software registry key.

Win32.Lovgate.J – Case of Combined System and File Infection (pre-pending)

http://www3.ca.com/virusinfo/virus.aspx?ID=35142
The Win32.Lovgate family started out as an email worm that also carries backdoor features. Several variants later, the author decided to add file infection capability into its long feature list. Win32.Lovgate.J is one of the several Win32.Lovgate variants that carry a file infection component. Once activated, the file infector locates its victim by searching through all drive letters and all folders. If a target host file located, it creates a copy of itself and appends the entire host file to it, unchanged. The host file is then replaced with this modified copy of the virus. On execution, the virus extracts and creates the host file as a temporary files, and executes it.

When Win32.Lovgate.J executed, several copies of the worm are added to the System directory and various installation methods are used in hope that at least one of them will activate the worm.
Two application associations are changed to invoke the worm when the user double clicks on a text file or executable file:

HKCR\exefile\shell\open\command\(Default), "%SysDir%\winexe.exe "%1" %*"
HKCR\txtfile\shell\open\command\(Default), "winrpc.exe %1”

The following values are added to the Registry to invoke Win32.Lovgate.J when Windows restarts:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\WinHelp, "%System%\WinHelp.exe"
HKLM\Software\Microsoft\Windows\CurrentVersion\Run\WinGate initialize, "%System%\WinGate.exe -remoteshell"
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows\run, "RAVMOND.exe"

It also registers itself to run as a NT service:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Windows Management Instrumentation Driver Extension
"ImagePath" = "%SYSTEM\WinDriver.exe - start_server"

Win32.Lovgate.J attempts to spread through default IPC$ or ADMIN$ network shares using Guest or Administrator account, along with a predefined list of passwords. If successfully connected, it copies itself to the remote system directory as NetServices.exe, and creates the service "Microsoft NetWork FireWall Services".

In addition to running the backdoor service within itself, Win32.Lovgate.J also extracts and creates a DLL to run the backdoor service independently. The following registry values are created to activate the separated backdoor component:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\Remote Procedure Call Locator, "RUNDLL32.EXE reg678.dll ondll_reg"
HKLM\Software\Microsoft\Windows\CurrentVersion\Run\Program In Windows, "%Systemr%\IEXPLORE.EXE"
The backdoor DLL is registered in two places to run as a service:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ll_reg,
"ImagePath" = "RUNDLL32.EXE Task688.dll ondll_reg"
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\NetMeeting Remote Desktop (RPC) Sharing,
"ImagePath" = "RUNDLL32.EXE Task688.dll ondll_server"

Lastly, the backdoor DLL is copied to the System directory as 111.DLL and inserted into LSASS.EXE.
Does the malware run successfully on 64-bit Windows?

There are many problems caused by the worm that makes the infection obvious to detect and hard to clean. Although the worm tries to create an event object as infection mark in memory, multiple instances are still observed.

It uses GetSystemDirectoryA() to obtain the path for dropping WINEXE.EXE and setting the registry value for it, so the shell open registry value of EXEFILE it modified successfully activating the worm when user launching an .EXE file.

The worm also successfully created several NT services. Fortunately, due to the inappropriate registry value it creates under HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows, the worm executable can not be located and caused a delay in releasing the event object, which in turn delayed the worm service startup.
The backdoor component of Win32.Lovgate.J is configured to start in three ways. The worm executable

An interesting observation made during Win32.Lovgate.J case studying is that once the “exefile” command is replaced, Windows launched the 32-bit version of regedit.exe instead of the default 64-bit version of regedit.exe.

The separated backdoor service runs without problem, but luckily the 111.DLL intended to be inserted into LSASS.EXE process is not successfully created.

The prepending virus side of Win32.Lovgate.J runs without problem. It searches for .EXE files on the system, does not check if it’s MZ, PE or PE+ format, and replace the host files with a copy of the worm appended with the entire host file. Once activated, the worm extractes and executes the host file first, then continue to run the worm code once the process created with the host file terminates.

Win32.Dumaru.A – File Infection (NTFS Stream)

http://www3.ca.com/virusinfo/virus.aspx?ID=36374

When executed, Win32.Dumaru.A creates a global atom called Program12345, that it uses as an infection marker in memory, and quits if it already exists. It then copies itself to:
%System%\load32.exe
%System%\vxdmgr32.exe
%Windows%\dllreg.exe
It sets the following registry value to ensure that the worm is run on each Windows startup:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run\load32="%System%\load32.exe"

HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows\run = %Windows%\dllreg.exe"
On machines using NTFS file system, Win32.Dumaru.A infects files taking advantage of NTFS streams. It infects files with extension “EXE” as a companion virus by replacing the main stream of the file with a copy of itself, and creates an alternate stream “STR” to store the original host. For example, when infecting a file called "CALC.EXE", the original host file will be saved in "CALC.EXE:STR". The alternate stream will only be preserved when the infected file is transferred between NTFS file systems. If the file is moved to a FAT or FAT32 file system, the alternate stream is lost and the original host file can not be recovered.

Does the malware run successfully on 64-bit Windows?

The worm copies itself to both Windows and System directory. Although System directory is redirected, the worm will still run on Windows startup from its Windows directory copy, invoked by the “Run” value created under HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows.

Due to a bug in the worm, it only infects files under the root of Drive C. Infected files will appeared to have the same size of the worm, while the original host is stored in an alternate stream named “STR”. When activated, the worm runs first, then extracts the host file to the Temp directory and uses WinExec() to launch it. The extracted host files run without problems, except those that utilize the launching directory as search path.

Win32.Valla.2048 – File Infection (Insert New Section)

http://www3.ca.com/virusinfo/virus.aspx?ID=35068
Win32.Valla.2048 looks for files with .EXE and PE signature to infect. The virus searches its victim in the Windows directory, System directories, the current directory, the parent directory, and the root directory of the drive from where the virus was first executed. It adds a new section named "XOR" to the victim file, and fills it with 2048 bytes of the virus code.

Does the malware run successfully on 64-bit Windows?

The virus fails to locate kernel32.dll entry in memory when run under wow64 and does not execute on 64-bit Windows. Also it doesn’t infect 64-bit executables because the virus assumes the size of the optional header to be 0xe0 where in fact it is 0xf0 for 64-bit binary executables.

Referencess

AMD Opteron architecture.

http://www.amd.com/us-en/Processors/DevelopWithAMD/0,,30_2252_739_9003,00.html
Intel Itanium architecture and data sheets.

http://www.intel.com/design/itanium2/index.htm?iid=ipp_srvr_proc_itanium2+prod_procspec&
EFI - Extensible Firmware Interface
http://www.microsoft.com/whdc/hwdev/platform/firmware/efi/default.mspx

64-Bit Platform Design
http://www.microsoft.com/whdc/hwdev/platform/64bit/default.mspx

Windows and GPT FAQ
http://www.microsoft.com/whdc/hwdev/tech/storage/GPT_FAQ.mspx

Designing for 64-bit Windows
http://www.microsoft.com/whdc/hwdev/platform/64bit/64bitsystems.mspx

Platform SDK: 64-bit Windows Programming
Process Interoperability
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/win64/win64/the_environment.asp
Windows Scripting host.

http://support.microsoft.com/?kbid=232211
An In-Depth Look into the Win32 Portable Executable File Format

By Matt Pietrek

http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx
Appendix

PE+ File Header Layout

	Offset in File
	Size
	Description
	Difference In PE

	0x00
	4 bytes
	PE signature (‘P’, ‘E’, ‘\0’, ‘\0’)
	

	0x04
	2 bytes
	Machine signature, 0x0200
	0x014C

	0x06
	4 bytes
	Number of sections
	

	0x08
	4 bytes
	Time/Date stamp
	

	0x0C
	4 bytes
	Pointer to COFF Symbol Table
	

	0x10
	4 bytes
	Number of Symbols
	

	0x14
	2 bytes
	Size of optional header, 0xF0, including the size of the pointer/size pair table
	0xE0

	0x16
	2 bytes
	Characteristics for the image
	

	0x18
	2 bytes
	Optional header signature, 0x020B
	0x010B

	0x1A
	1 byte
	Major linker version
	

	0x1B
	1 byte
	Minor linker version
	

	0x1C
	4 bytes
	Size of code
	

	0x20
	4 bytes
	Size of initialized data
	

	0x24
	4 bytes
	Size of uninitialized data
	

	0x28
	4 bytes
	Address of entry point (RVA)
	

	0x2C
	4 bytes
	Base of code (RVA)
	

	0x30
	8 bytes
	Image base (VA)
	Base of data (RVA), 4 bytes

	
	
	
	Image base (VA), 4 bytes

	0x38
	4 bytes
	Section alignment
	

	0x3C
	4 bytes
	File alignment
	

	0x40
	2 bytes
	Major operating system version required
	

	0x42
	2 bytes
	Minor operating system version required
	

	0x44
	2 bytes
	Major image version number
	

	0x46
	2 bytes
	Minor image version number
	

	0x48
	2 bytes
	Major subsystem version number
	

	0x4A
	2 bytes
	Minor subsystem version number
	

	0x4C
	4 bytes
	Reserved
	

	0x50
	4 bytes
	Image size
	

	0x54
	4 bytes
	Header size
	

	0x58
	4 bytes
	Image checksum
	

	0x5C
	2 bytes
	Subsystem required to run this image
	

	0x5E
	2 bytes
	DLL characteristics
	

	0x60
	8 bytes
	Size of stack reserve
	Size of stack reserve, 4 bytes

Size of stack commit, 4 bytes

	0x68
	8 bytes
	Size of stack commit
	Size of heap reserve, 4 bytes

Size of heap commit

	0x70
	8 bytes
	Size of heap reserve
	Loader flags, 4 bytes

Number of optional pointer/size pairs, 4 bytes

	0x78
	8 bytes
	Size of heap commit
	Export table (RVA)

	0x80
	4 bytes
	Loader flags
	Import table (RVA), low 4 bytes

	0x84
	4 bytes
	Number of optional pointer/size pairs
	Import table (RVA), high 4 bytes

	0x88
	8 bytes
	Export table (RVA, size)
	Resource table (RVA, size), low 4 bytes

	0x90
	8 bytes
	Import table (RVA, size)
	Resource table (RVA, size), high 4 bytes

	0x98
	8 bytes
	Resource table (RVA, size)
	Security table (RVA, size)

	0xA0
	8 bytes
	Exception table (RVA, size)
	Relocation table (RVA, size)

	0xA8
	8 bytes
	Security table (RVA, size)
	Debug table (RVA, size)

	0xB0
	8 bytes
	Relocation table (RVA, size)
	Machine specific table (RVA, size)

	0xB8
	8 bytes
	Debug table (RVA, size)
	Thread local storage table (RVA, size)

	0xC0
	8 bytes
	Machine specific table (RVA, size)
	Load config table (RVA, size)

	0xC8
	8 bytes
	Thread local storage table (RVA, size)
	Bound import table (RVA, size)

	0xD0
	8 bytes
	Load config table (RVA, size)
	Import address table (RVA, size)

	0xD8
	8 bytes
	Bound import table (RVA, size)
	Delay import descriptor table (RVA, size)

	0xE0
	8 bytes
	Import address table (RVA, size)
	COM+ runtime header (RVA, size)

	0xE8
	8 bytes
	Delay import descriptor table (RVA, size)
	.NET (RVA, size)

	0xF0
	8 bytes
	COM+ runtime header (RVA, size)
	Reserved (0)

	0xF8
	8 bytes
	.NET (RVA, size)
	Variable Section table (size is indicated by the COFF header)

	0x100
	8 bytes
	Reserved (0)
	

	0x108
	8 bytes
	Variable Section table (size is indicated by the COFF header)
	

